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Ultrasonic Nondestructive Imaging of Worn-Off Hallmarks on Silver:
Preliminary Results

Paul L. Benson and Robert S. Gilmore

Introduction

The use of hallmarks on silver has a long history, dating back to at least the sixth century
AD. A series or system of five marks has been found on Byzantine silver dating from this
period, though interpretation of these marks is still not completely solved [1].
Hallmarking of European silver probably originated in France in the thirteenth century
and spread from there to other countries. The French standard for silver quality was
established in 1260, the first use of a town mark was established in 1275, the individual
maker’s mark was introduced in 1355, and the date letter system introduced in 1427. In
England, the silver standard mark was established in 1300 followed by the introduction of
a maker’s mark in 1363, the town mark in 1423 and the date letter mark in 1478 [2]. As
the history and standards of hallmarking silver and gold objects from various countries is
complex, it should be consulted on an individual basis (See Figure 1).

Figure 1: Typical set of English hallmarks indicating that the object is made of sterling silver
and made by Paul Lamerie in London in the year 1739.
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Hallmarks on silver and gold objects can fix these pieces in history by providing direct
evidence of the maker, the place and date of manufacture, and the quality of the metal
alloy at a particular time. To some extent then the historic, monetary, and intrinsic values
of the objects are directly linked to the ability to read the hallmarks. Silver’s propensity to
tarnish means that it must to be polished regularly to maintain its desired bright metallic
surface finish. The polishing process removes a thin layer of silver metal so that over
time the hallmarks will be gradually reduced to the point where they are either illegible or
completely polished away, resulting in the loss of valuable historic information. The
ability to read the original marks would greatly aid in the placement of the object back
into its rightful place in history.

Even though the hallmark can be completely worn away, there may still be sufficient
residual plastic deformation within the metal from the act of striking the surface to create
the hallmark. This residual deformation can be characterized in the form of an acoustic
response when the surface is insonified with a focused acoustic beam; the amplitude of
the response is then used to create an image on a CRT screen. The highly polished, i.e.,
smooth, silver surface provides a nearly ideal medium for the utilization of scanning
acoustic microscopy imaging techniques.

Ultrasonic Imaging Systems and Scanning Acoustic Microscopes

The ultrasonic imaging technologies for visualizing the surfaces and interiors of opaque
solids are well established [3]. Between 1929 and 1931, Sokolov and Mulhauser inde-
pendently proposed the use of ultrasonic waves to form images of the interior of materials
for materials characterization and nondestructive evaluation (NDE). During the 1930s all
efforts to develop ultrasonic images involved the development of acoustic amplitude sen-
sitive screens that displayed visible contrast in proportion to the acoustic amplitude inci-
dent on the screen. These image converter screens (such as the Pohlmann Cell and the
Sokolov Tube) had such poor sensitivity and resolution that little use was made of them
other than as curiosities. Pulse-echo and pulse-transmission C-Scan images, using both
focused and unfocused ultrasonic beams, were introduced in the early 1950s. The primary
use was for industrial NDE. These initial C-Scan images were displayed on photographic
or voltage sensitive paper and were acquired by scanning a single transducer back and
forth over the subject material. The image was built up line by line. By the early 1970s
ultrasonic C-Scan inspections of both the surfaces and interior volumes of industrial
materials were in general use and C-Scan images had been produced as high as 50 MHz
in frequency. In the early 1970s work at Stanford University under the direction of C.F.
Quate [4] combined zinc oxide on sapphire transducers, C-Scan data acquisition, and
microwave electronics to create very small ultrasonic images at GHz frequencies. These
images rivaled optical microscopy in resolution, detail, and field of view; therefore, the
devices that made them were called Scanning Acoustic Microscopes. The GHz
frequencies, low depths of penetration, and very small fields of view limited the in-
dustrial usefulness of scanning acoustic microscopy, except for microelectronic assem-
blies. However, the near-optical resolution of the acoustic microscope images provided a
new emphasis and enthusiasm for ultrasonic imaging in general. This renewed effort,
combined with the collateral advances in the power, storage, and display capabilities of
small computers, resulted in three decades of rapid progress in ultrasonic imaging
devices, methods, and applications. By the start of the 21st century, ultrasonic imaging
methods were well established to characterize material microstructures, bonds, defects
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(flaws, voids, cracking, porosity, layer delaminations), coating delaminations, elastic
modulus and density variations, heat affected zones in welds and other fusion processes,
stress distributions in isotropic materials, and in vitro carious lesions. Materials examined
include ceramics, composites, glass, metals and alloys, polymers, plastics,
semiconductors, electronic components, geological materials, coffee and soybeans, bone,
teeth, soft biological tissue, and organic compounds. However, a literature search has
found only three references to acoustic microscopy and metal or ceramic art objects
[5,6,7].

Several texts are available that clearly describe ultrasonic imaging and acoustic micros-
copy [3,4,8]; therefore, the characteristics and operation of the systems will only be
summarized here. A typical transducer used for acoustic imaging consists of a piezoe-
lectric layer cut to a specified frequency and bonded to a plano-concave lens to focus the
ultrasonic beam. For high-frequency operation, the lens is usually fabricated from single
crystal sapphire or fused quartz. Alternatively, eliminating the lens and spherically curv-
ing the piezoelectric layer itself can also focus the ultrasonic beam. In the case of pulse-
echo C-Scan data acquisition, the transducer acts as both the transmitter and receiver of
the acoustic energy. A short electrical pulse is applied to the piezoelectric layer to create
the acoustic pulse, and return acoustic echoes interact with the layer to create electrical
signals. The object to be scanned is placed at the focal point of the ultrasonic beam. What
makes an acoustic microscope unique is the ability to place the focal point of the acoustic
energy either on the surface of the object or subsurface in the object’s interior. Again, as
with all C-Scan type data acquisition, the image is acquired by raster scanning the
ultrasonic beam and acquiring echo amplitudes at an increment along the scan lines equal
to the line-to-line spacing (See Figure 2).

Figure 2:  Schematic of an ultrasonic imaging system; higher frequencies and higher image
magnification would make the same schematic an acoustic microscope.
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For frequencies much above 1 MHz, acoustic waves are rapidly attenuated in air so it is
necessary to utilize a coupling fluid between the transducer and object to be imaged. The
acoustic properties of the coupling fluid are a significant factor in determining the reso-
lution that can be achieved by the acoustic imaging system. The most used fluid is water
but other fluids have acoustic properties (namely a higher or lower velocity) that make
them superior to water, particularly when surface wave imaging is used. For this work
FC-40 (an inert fluorocarbon fluid with a velocity less than half that of water) was used to
make surface wave images in the sterling silver objects discussed here. Usually, the ob-
ject is submerged in the fluid while being scanned, but some systems use pumped water
columns essentially squirted at the surface being scanned. The images acquired in this
work were all made by immersing the silver objects in FC-40 or water.

The contrast changes in acoustic images are produced by variations of elasticity, density,
and acoustic attenuation within the material to be imaged. In the specific case of imaging
worn hallmarks, this paper will demonstrate that images of the residual deformation in
the metal from the stamping process can be obtained by two of the three ultrasonic
imaging modes mentioned in the abstract:  (1) Surface wave imaging of the surface
containing the hallmark deformation (See Figure 3a), (2) Back-wall or back surface
imaging where an acoustic beam is focused through the full thickness of the silver and on
the back surface containing the hallmark deformation (See Figure 3b). In other words,
surface waves are used to produce images of the entry surface, i.e. the struck surface,
where back-wall images are obtained from the surface opposite to the struck surface.

(a) (b)

Figure 3:  Schematic showing (a) back surface reflection imaging (or back-wall imaging) and
(b) mode converted surface wave imaging.
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Experimental Results

A first step in determining if residual deformation in silver or any other material is a can-
didate for acoustic imaging is to determine the stability of this deformation over time.
The lowest temperature that might affect this stability is the residual stress annealing
temperature. This is generally considered to be approximately 4/10 (0.4) of the absolute
melting temperature as expressed in Kelvins (K). The highest temperature below the
melting point affecting the retention of the deformation is less exact, but is the range in
temperature at which recrystallization occurs. Here the grain boundaries in the silver
migrate and the microstructure entirely recrystallizes. Any residual plastic flow
remaining from a hallmark would begin to relax at the stress anneal and could totally
disappear during recrystallization. Since the melting point (Mp) of sterling silver is
893 ºC = 1166 K, the stress anneal would fall at approximately 0.4 × 1166 = 466 K or
approximately 93 ºC above the boiling point of water (100ºC or 373 K). Room tempera-
ture is typically approximated at 300 K and ambient temperature in the middle latitudes is
between –40 ºC and 54 ºC (233 K and 327 K). Since the lowest critical temperature for
sterling silver (466 K) is well above these temperatures, it seems reasonable to expect the
residual deformation produced by a hallmark stamp to be relatively stable over a few
hundred years of time, even if repeatedly washed in hot water.

A second consideration in imaging residual deformation is to determine the acoustic
properties of the subject material and any possible anisotropy of the material. Unless the
deformation process produces microfractures, there is no reason to anticipate that a truly
isotropic material would be rendered anisotropic by plastic deformation. Anisotropic
materials, however, should undergo considerable change during deformation, since a lo-
cal deformation would significantly rearrange that microstructure. It seemed appropriate
to estimate the anisotropy in silver to determine if ultrasonic backscatter from the silver
microstructure itself might be used to track the deformation underlying hallmarks. The
three elastic constants for single crystal silver (cubic system) are [10]:  C11 = 1.239
Mbar, C12 = 0.939 Mbar, and C44 = 0.461 Mbar. Isotropic materials have only two
independent elastic constants instead of the three required to describe the cubic system. A
typical test for isotropy (again within the cubic system) is the equality of [C11 – C12] /
2.0 to C44. Clearly 1.239 – 0.939 / 2.0 = 0.150 and is not equal to 0.461, so silver pos-
sesses considerable anisotropy. Therefore ultrasonic backscatter from the silver grains
should be able to track the modifications in the microstructure caused by the plastic flow
in the silver around the hallmarks. Having established this possibility, one should imme-
diately state that backscatter imaging of the silver microstructure has not proven effective
to date for displaying residual deformation in the silver. Sterling silver proved to have a
longitudinal velocity of 3.89 mm/microsecond, a transverse velocity of 1.73
mm/microsecond, and a surface wave velocity of 1.63 mm/microsecond.

Sterling Silver Coupons

Initial experimentation was conducted on two blank sterling silver (92.5% silver) cou-
pons measuring approximately 25 mm × 25 mm × 3 mm. An experienced silversmith
then placed three different hallmarks on one surface. A silversmith was employed to pro-
duce the hallmarks, thinking that he would strike the silver with approximately the same
force used by silversmiths for the past several hundred years so that the marks would be
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neither too deep nor too shallow. Approximately 0.075 mm was removed from the struck
surface of one of the coupons with a rotary lapping machine. This was done to
approximate the slow removal of the silver surface in much the same manner as years of
polishing. The struck surface of the second coupon was polished in the same manner until
essentially all of the hallmarks were removed. Once the marks were completely removed
from the surface, the coupon was placed in a container with some keys, and the container
was vibrated to produce scratches on the silver to simulate the surface on a genuine aged
art object. The three ultrasonic images shown in Figure 4 illustrate the detail ultrasonic
imaging can produce on both intact hallmarks and the deformation remaining after
removal by polishing. Figure 4a shows a 50 MHz F/2 back wall image of a coupon that
still retains almost all of the hallmarks placed on it. Figure 4b shows a 50 MHz F/2 back-
wall image of the residual deformation in a similar coupon where almost all of the
original hallmarks have been polished away. Figure 4c shows a 20 MHz F/1 surface wave
image of the same deformation in 4b except viewed from the surface containing the
residual deformation. Both back-wall images were acquired using water to couple the
ultrasonic beam into the part. The surface wave image used FC-40 to mode convert a
longitudinal wave in the fluid into a surface wave on the silver coupon’s surface.

Figure 4: Three ultrasonic images of the sterling silver coupons. (a) A 50 MHz F/2 back-wall image of
the original hallmark. (b) A 50 MHz F/2 back-wall image of the residual deformation
remaining in a similar coupon where the hallmark has been polished away. (c) A 20 MHz F/1
surface wave image of the same deformation shown in 4b, except imaged from the surface
containing the deformation (a surface wave image).
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Sterling Silver Spoon Handle

Figure 5 shows a set of surface wave images of a sterling silver spoon wrought by Peter
and Ann Bateman dating from 1792. This teaspoon, one from a set of eight, was chosen
because its four hallmarks varied from perfectly readable to completely polished away.
Also, the four hallmarks are legible on the other spoons from this set, making it easier to
target the desired image quality. In Figure 5a the makers’ initials are clear but much of
the remaining hallmarks have been removed or were improperly struck. Figure 5b shows
the isolation, magnification, and partial recovery of one of the hallmarks believed to be
that of a lion. The image of the “lion” shown in Figure 5c is the best result of a series of
trials where the focus of the transducer was changed slightly for each trial. The impor-
tance of even very small changes in the system focus has been repeatedly demonstrated in
the course of this work.

Figure 5: Ultrasonic images of the handle of a sterling silver spoon wrought by Peter and Ann Bateman
dating from 1792. The initials of the makers are clear but much of the remaining hallmarks
have been removed or were improperly struck; (c) shows the isolation, magnification, and
partial recovery of a figure thought to be a lion.
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Knife Blades:  Sterling silver fish knife blade and steel table knife blade

Figures 6 and 7 are intended to show the lack of subsurface deformation where one
would naturally assume that it should be present. Figure 6 shows a set of ultrasonic back-
wall images of the sterling silver blade of a French fish knife dated approximately1875 to
1925. One hallmark has been isolated and magnified (b) for comparison to the back-wall
image of the deformation in the test coupon (c). Clearly no deformation appears to extend
from the fish knife hallmark, suggesting that it has either been improperly struck by the
silversmith or the residual deformation has been ‘relaxed’ during an annealing process.
Some French hallmarks were actually applied to the roughed-out silver sheet before the
object was completed. The finished object would have been subjected to multiple
annealing steps during its manufacture, thereby relieving the metal of any residual defor-
mation from the hallmarking procedure. This is in comparison to the English system of
applying the hallmarks only after the object had been completed; thus the residual plastic
deformation in the metal would be retained. It is also possible that the heat from the
process of soldering the handle to the blade was sufficient to cause a localized annealing
of the hallmarks since they are placed quite close to the attached handle.

Figure 6: Ultrasonic back-wall image of the sterling silver blade of a French fish knife dated
approximately 1875 to 1925. One hallmark is isolated and magnified for comparison to the
back-wall image of the coupon. No deformation appears to extend from the fish knife
hallmark, suggesting that it is (1) incomplete, (2) improperly struck,  (3) unstable over 100
years of the temperature environment it encountered, or (4) an annealing process has
removed the residual deformation.
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Figure 7 shows a direct reflection image (a) and a surface wave image (b) of the steel
blade of a French table knife dating from the early nineteenth century. Again, no
deformation is observed in the blade surface where the writing has been polished or
ground away. This suggests an incomplete original impression or possibly that etching
was used to produce the characters on the blade.

Figure 7:  (a) A direct reflection image and (b) a surface wave image of the steel blade of a table
knife. Deformation is not observed in the blade surface where the writing has been
polished or ground away, suggesting a poor original impression or, possibly, that etching
produced the inscription.

Conclusions and suggested further work

At this point there are several confusing aspects of this work. Results from the modern
sterling silver blanks have been very encouraging. The hallmarks were placed on the
blanks in the early summer of 1997 by an experienced silversmith. These hallmarks were
well and truly struck (i.e., their original existence is well documented). After the hall-
marks were removed by polishing, ultrasonic imaging produced clearly decipherable
images of the remnant deformation on the surface of the silver. Both surface wave imag-
ing and back-wall imaging were clearly effective at displaying residual deformation in
the silver. Where only part of the hallmark was removed, the imaging methods are able to
show remnant deformation extending out from the remnant surface dents in the surface.
The blanks are now approaching four years in age. Repeat images show results in 2001
that reproduce the results shown in the initial 1998 images. However, despite the clear
anisotropy in silver, backscatter imaging of the silver microstructure has not yet proven
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effective. Neither the silver microstructure itself nor deformation of that microstructure
has been shown by backscatter imaging at the 20 MHz or 50 MHz frequencies used to
date. The failure of the backscatter imaging is confusing since both the back-surface
reflection images and the surface wave images clearly indicate that the acoustic
properties of the silver showed significant changes at the hallmark locations.

Work to recover partially obliterated hallmarks on antique silver objects has been less
encouraging than the work on the coupons. But in these cases one cannot be certain that
the hallmarks were properly struck in their original condition. The silver blade of the
French fish knife (See Figure 6) demonstrates this case in point, as does the steel blade of
the table knife (See Figure 7). The fish knife is ideally configured for back-wall imaging
and yet no remnant deformation could be shown to extend from the dented marks
remaining on the blade. Were these hallmarks ever more extensive or is the deformation
in the French silver composition unstable over a time period of 200 years. Similar results
were obtained for the surface wave images on the steel blade of the table knife. No
residual deformation was shown extending from the dented patterns on the blade surface.

Surface wave images of antique coins suggest that downward or compressive deforma-
tion (i.e., a dent) is more readily defined than the upwelling of material. Efforts to image
the originally upraised patterns of the years in which coins were struck have not yet been
successful. This suggests that the deformation under dents is more readily detected than
bulges.

Clearly, considerable work is required to resolve the issues this preliminary study has
raised.
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Materials

FC-40 Fluorinert Brand Electronic Liquid: a perfluoro liquid containing no hydrogen or
chloride: 3M Specialty Materials, 3M Center, St. Paul, Minnesota 55144-1000 USA,
Tel.: 651-737-6501.

Résumé

Les poinçons sur les objets en argent peuvent apprendre beaucoup de choses sur l’histoire
de la pièce. Le nom de l’orfèvre, la date de fabrication, la qualité de l’alliage, ainsi que
bien d’autres renseignements, peuvent être tirés de l’étude du poinçon. Comme l’argent
demande à être  astique pour garder son brillant, avec le temps, les poinçons ont tendance
à s’estomper, ce qui entraîne la perte d’importants renseignements historiques. En
utilisant le Microscope à Balayage Acoustique, on peut retrouver une image de ces
marques effacées ou illisibles. Plusieurs types d’images peuvent être obtenues:  image par
balayage montrant la déformation superficielle de l’argent, images en réflexion directe du
relief de la surface, images en réflexion directe de l’envers de l’objet grâce à ce qui reste
d’argent déformé. Le contraste dans ces images est dû aux différences de vitesses
ultrasoniques au sein de l’argent, aux variations de densité et à l’attenuation acoustique
dûe à la déformation de la microstructure de l’argent. Cette technique est non destructive,
ne nécessite aucun contact et ne demande pas qu’un échantillon soit prélevé sur l’objet.
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